Agilent Captiva Syringe Filters RAISE YOUR SAMPLE FILTRATION STANDARDS

The Measure of Confidence

apillo

Captiva

Agilent Technologies

SAMPLE FILTRATION

Your time is precious... and so are your samples

Now more than ever, chromatographers are using filtration to help meet their unrelenting analytical demands and uncompromising expectations for quality, speed, and reproducibility.

For years, Agilent has understood that filtering samples prior to HPLC, UHPLC, GC/MS, and LC/MS analysis can improve both system performance and analytical quality – and this experience is reflected in our new line of Captiva syringe filters.

Performance begins here: Now you can improve accuracy

Now you can improve accuracy without adding time to the chromatography process

- More choices: Agilent Captiva filtration products are available in a wide range of sizes, formats, and membranes to cover every matrix and sample.
- **Certified cleanliness:** Agilent Captiva Premium syringe filters are shipped with an HPLC or LC/MS Certificate that guarantees extremely low levels of observed extractables.
- **Top speed:** Our new syringe filters have excellent flow rates and maximum sample loading capacity.
- **Unmatched quality:** Every syringe filter is constructed with the highest-grade virgin polypropylene or MBS housing, and is securely welded to prevent bursting and ensure sample integrity.

For optimal performance, column lifetime, and sample integrity, you can count on Agilent – the world chromatography leader – to help you improve your productivity.

Agilent Captiva Premium Syringe Filters4
Agilent Captiva Premium Syringe Filter specifications 6
Proof of performance: Flow rate & volume capacity8
Proof of performance: Filtration efficiency9
Filtration impact on LC column life10
Polyethersulfone (PES) Premium Syringe Filters 12
Agilent Captiva Econofilters 15
Agilent Captiva Econofilter specifications16
Agilent Captiva Syringe Filter instructions
Agilent Captiva Syringe Filter selection guide18
Agilent Captiva Premium Syringe Filter chemical compatibility chart
Agilent Captiva Econofilters chemical compatibility chart 21

Agilent Captiva Premium Syringe Filters

Sample filtration prior to HPLC, UHPLC, GC, GC/MS, or LC/MS analysis is critical to achieving optimal system performance. Agilent Captiva Premium Syringe Filters make the process faster than ever with the industry's highest flow rates and loading capacities. In addition, Agilent sets the standard for LC/MS testing and certifying more syringe filters to be completely free of observed extractables than any other manufacturer. All Agilent Captiva Premium Syringe Filters are supplied with a HPLC or LC/MS Certificate. Choose from a variety of membrane types and pore sizes to suit your needs.

Premium Filters, 100/pk

Description	Diameter (mm)	Pore Size (µm)	Certification	Housing	Part No.

Layered Filters with Pre-Filter

Layered Filters, 100/pk

Description	Diameter (mm)	Pore Size (µm)	Certification	Housing	Part No.

Captiva Disposable Syringes, Individually bagged, 100/pk

Volume (mL)	Part No.
5	9301-6476
10	9301-6474
20	5190-5103

Agilent Captiva Syringe Premium Filter Specifications

	PTFE							Cellulose Acetate	
	0.2			0.45	0.2	0.45	0.2		
Filter area (cm²)	0.07	0.07	1.7	1.7	4.8	4.8	6.2	6.2	
	PP	PP	PP	PP	PP	PP	MBS (blue)	MBS (yellow)	
Bubble point	>1.4 bar	>0.9 bar	>1.4 bar	>0.9 bar	>1.4 bar	>0.9 bar	>3.2 bar	>2.0 bar	
Burst pressure before stabilization	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	
Average flow rate for ethanol (@ 1.0 bar)	>1.0 mL/min @ 3.0 bar	>2.0 mL/min @ 3.0 bar	>20 mL/min	>45 mL/min	>70 mL/min	>130 mL/min			
							>60 mL/min	>160 mL/min	
Sterile filtration capability (Bacterial Challenge Test with 10 ⁷ Brevundimones diminuta for 0.2 µm)	Not tested	Not tested	All filtrates ste	erile @ 4.0 bar	All filtrates st	erile @ 4.0 bar	All filtrates sterile @ 4.0 bar	Not tested	
					Very low pro Hydro				
pH range			1 to 14						
Gamma globulin adsorption (protein binding)							<10 µ	g/cm ²	

	Glass Micro	fiber/Nylon	Glass Microfiber/PTFE				
	0.2 µm (nylon)	0.45	0.2	0.45	0.2	0.45	
	4.8	4.8	1.7	1.7	4.8	4.8	
	РР	PP	PP	PP	PP	PP	
	>3.0 bar	>2.0 bar	>1.4 bar	>0.9 bar	>1.4 bar	>0.9 bar	
Burst pressure before stabilization	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	
			>20 mL/min	>45 mL/min	>70 mL/min	>130 mL/min	
	>50 mL/min	>80 mL/min					
Sterile filtration capability (Bacterial Challenge Test with 10 ⁷ Brevundimones diminuta for 0.2 µm)	Not tested	Not tested	All filtrates st		All filtrates st		
Key properties	Best for highly partic compatible with mo Not suit protein recove Hydro	ulate laden samples; ost organic solvents. table for ry applications. ophilic	Best for highly particulate laden samples; broadest chemical compatibility, particularly with strong acids and bases. Hydrophobic			compatibility,	
pH range	3 to	14		1 to	o 14		
Gamma globulin adsorption (protein binding)							

		Regenerate	d Cellulose	Glass Micro	fiber/Nylon		
	0.45			0.2	0.45		
0.07	0.07	1.7	1.7	4.8	4.8	1.7	1.7
PP	PP	PP	PP	PP	PP	PP	PP
>3.4 bar	>2.0 bar	>3.4 bar	>2.0 bar	>3.4 bar	>2.0 bar	>3.0 bar	>2.0 bar
	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar
>0.5 mL/min @ 3.0 bar	>1.5 mL/min @ 3.0 bar	>10 mL/min	>30 mL/min	>60 mL/min	>100 mL/min @ 1.0 bar	>20 mL/min	>40 mL/min
	Not tested		Not tested	Not tested	Not tested		
Broad chemical compatibility, also low protein binding. Suitable for most HPLC & UHPLC applica- tions. Hydrophilic						Best for highly particulate laden sar solvents. Not suitable for pr Hydro	nples; compatible with most organic rotein recovery applications. ophilic
3 to 12						3 to	14

	Ny	lon		PES					Glass Microfiber		
		0.2			0.2	0.45	0.2		n/a	n/a	
1.7	1.7	4.8	4.8	0.07	1.7	1.7	4.8	4.8	1.7	6.2	
PP	PP	PP	PP	PP	PP	PP	PP	PP	PP	MBS (white)	
>3.0 bar	>2.0 bar	>3.0 bar	>2.0 bar	>3.2 bar	>3.2 bar	>2.3 bar	>3.2 bar	>2.3 bar		>0.5 bar	
	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	>6.0 bar	
>20 mL/min	>40 mL/min	>50 mL/min	>80 mL/min	>2.5 mL/min	>40 mL/min	>60 mL/min	>100 mL/min	>140 mL/min	>250 mL/min	>450 mL/min	
All filtrates sterile @ 4.0 bar	Not tested	All filtrates sterile @ 4.0 bar	Not tested	Not tested	All filtrates sterile @ 4.0 bar	Not tested	All filtrates sterile @ 4.0 bar	Not tested	Not tested	Not tested	
Broad chemical compatibility, excellent choice for organic solvents and samples with higher pH. Hydrophilic				Compatible v ext	vith aqueous solu ractables and exc	tions, and some (cellent flow rates; Hydrophilic	organic solvents e low protein bindi	extremely low ing.	Used as a broad comp organic and stro Hydro	pre-filter, atibiltiy with solvents ng acids. ophilic	
	3 to) 14		3 to 12					1 to 14		
	~50 µ	g/cm ²			<	8 µg/cm² (for BS	A)				

Proof of Performance: Flow Rate & Volume Capacity

Choose Agilent Captiva Premium Syringe filters for greater filtration speed and recovery than other filters of the same size. We understand the demands on chromatographers, so we've designed our syringe filters to make filtration fast, easy and and effective.

With Agilent syringe filters, particulates will not clog the membrane as easily as with competitor's syringe filters. Even with highly particulate-laden samples, you can be assured more of your sample will be filtered than with competitor's products.

Proof of Performance: Filtration Efficiency

Testing Method

Sample preparation

The surfactant solution, 0.1% Triton X-100, was used to prepare 0.01% latex beads (0.3 μm and 0.5 μm) solution. The 0.1% Triton X-100 was used to maintain the homogeneity of latex beads solutions.

Filtration

The challenging solution was passed through each individual syringe filter and a 1-mL filtrate was collected in a 2-mL vial for an HPLC run.

Ten different filters of each kind of filter were tested.

Filtrate measuring on HPLC/UV

The maximum absorbance of the latex beads solutions was observed at 272 nm, which was used to correlate latex beads concentration with absorbance.

A simple HPLC method was used for automatic testing under UV 272 nm. No column was used. The mobile phase was water and a flow rate of 1.0 mL/min was used.

The eluted peak at 272 nm was used for filtration efficiency calculation.

Blank 0.1% Triton X-100 was run to correct contributions from surfactant absorbance at 272 nm.

Agilent Captiva Syringe Filters provide equivalent or better filtration efficiency than competitors' equivalent products on particulates removal

Average Filtration Efficiency of Agilent Captiva Syringe Filters vs. Competitors

Filtration efficiency (%) Filtra	(Filtration FFF(%) =	PeakArea Unfiltered LBsolution	PeakArea Unfültered Blank)_(PeakArea Filtered LBsolution	PeakArea Filtered Blank	100%
calculation	1 <i>uu uu uu uu u u u u u</i>	(1	PeakArea Unfiltered LBsoluti	ion—1	PeakArea Unfiltered Blank)		χ 100/0

Agilent Captiva Syringe Filters

provide consistent and higher than 90% filtration efficiency on particulate removal

	Agilent pr	emium 0.1	2 µm syı	ringe filt	ers		1	Agilent pr	emium ().45 μm	syringe fil	ters
	Nylon	PTFE	RC	PES	GF/NY	GF/PTFE	Nylon	PTFE	PES	CA	GF/NY	GF/PTFE
2							93.2					
							95.4					
							95.3					
							98.0					
10	99.2	91.3	95.7	96.1	94.7	99.6	99.7	94.8	87.5	92.8	100.5	101.3
RSD (%)	2.2	0.8	3.7	3.7	2.0	0.5	2.2	1.1	3.3	1.9	1.5	1.3

Filtration Impact on LC Column Life Importance of Filtration

Column plugging is the most frequent cause of column failure encountered by chromatographers. Injection of samples containing even small amounts of particulate will clog the column inlet, cause high column backpressure, retention-time shift and loss of resolution, and subsequently shorten the normal column lifetime. This impact can be more significant for sub-2 µm columns. These smaller particle-size columns are usually used under high pressure, thus are more sensitive to pressure increase caused by the accumulated particulates on column.

Additionally, particulates can affect a variety of other components in the LC flow path, including the pump, the autosampler needle, and the injector switch valve. When partculates are caught in the switch valve the surface of the rotor can be damaged, causing carryover, sample cross-talk and leakage from the rotor. Therefore, Agilent always recommends filtration prior to any HPLC, UHPLC, or LC/MS injection. It is the best way to ensure proper system performance and column lifetime.

It is the intent of this work to demonstrate that sample filtration will lengthen the life of a column, not only the traditional LC columns using 0.45 μ m filters, but also the sub-2 micron LC columns using 0.2 μ m filters. To correlate the increased column life to the actual application, the plasma extracts by PPT treatment compared to samples without filtration, samples with centrifugation and samples with filtration.

Testing Method

Sample preparation

- A.) The surfactant solution, 0.002% Triton X-100, was used to prepare 0.05% latex beads (0.3 μ m and 0.5 μ m) solution.
- B.) Latex beads solution (0.3 μm) was used for sub-2 micron column life test. Unfiltered and filtered (using 0.2 μm filters) samples were used for comparison of impact on sub-2 micron column life.
- C.) Human plasma extract was used for sub-2 micron column life test. Unfiltered, centrifuged, and filtered (using 0.2 μm filters) samples were used for comparison of impact on sub-2 micron column life. The sample was prepared following the below steps.
 - 1. 2 mL of human plasma was aliquoted into a test tube.
 - 2. 10 mL of acetonitrile with 1% acetic acid was added.
 - 3. Sample was vortexed vigorously and then centrifuged at 4000 rpm for 5 min.
 - 4. The supernatant was transferred into a clean test tube.
 - 5. The supernatant was blown dry with N₂ at 37 °C.
 - 6. The dried sample was reconstituted in 10:90 MeOH/H₂Om, vortexed and sonicated.

Filtration

The challenge solution was passed through each individual syringe filter and a 1-mL filtrate was collected in a 2-mL vial for the HPLC run.

UHPLC instrumentation

(for sub-2 column life test)

Column:	Agilent ZORBAX Eclipse Plus C18 RRHD column, 2.1 x 50 mm, 1.8 µm, P/N 959757-902
	Column was disconnected from the detector and allowed to run to drain.
Mobile phase:	Acetonitrile: Water (35:65, v/v)
Flow rate:	0.4 mL/min, isocratic
Injections:	10 μ L per injection, 1 injection per minute
Monitoring:	Column backpressure was recorded with the number of injections.
Column failure:	When column backpressure exceeds 1000 bar.
Sequence:	A sequence of 1000 injections was usually used, unless column failed in the middle due to high pressure. A new column was used for each individual sequence.

Results – Filtration impact on sub-2 micron column A by Latex Bead 0.3 µm solution

Effects on Filtration on sub-2 micron Column Life

Number of injections of unfiltered or filtered of 0.3 µm latex beads Sample (0.05%)

Results – Filtration impact on sub-2 micron column B by Human Plasma PPT Extract

Effects of filtration on sub-2 column life time

Number of injections of unfiltered, centrifuged and filtered human plasma PPT extract

Conclusion

Sample filtration prior to introduction into an HPLC system was shown to significantly improve column lifetime.

Polyethersulfone (PES): the new standard in HPLC, UHPLC, and LC/MS sample preparation

LC/MS requires analysis at low levels, which means that there is a greater demand to reduce contaminants in your sample. Extractables and contaminants that can cause ion suppression or jeopardize analytical results are more apparent in LC/MS analyses. Therefore, filters that were previously fine for use on HPLC are no longer good enough. That's why Agilent has developed the Agilent Captiva PES Premium Syringe Filter. Certified on LC/MS for extremely low levels of extractables, thereby ensuring the integrity of your sample and the quality of your results.

Additional features of the PES Premium Syringe Filter:

- **Superior flow rates:** hydrophilic membrane allows for fast flow of aqueous and slightly organic solutions, which leads to increased productivity
- **High loading capacity:** the highly asymmetric nature of the membrane allows for high loading capacity, increasing the efficiency of the filter
- Extremely low protein binding: Agilent PES filters have the lowest protein binding of any other filters in the industry, making them ideal for biological sample preparation
- Virtually free of extractables*: as illustrated by the LC/MS chromatogram, these membranes are entirely free of extractables and therefore contribute no interference to chromatographic results

*Free of extractables only under conditions specified on the certificate

The following LC/MS chromatogram shows that the Agilent PES syringe filter is cleaner than the competitors PES syringe filters.

Premium Syringe Filter (ESI POS 30% MeOH)

LC/MS Certificate:

Agilent PES filters provide superior and consistent low protein binding for protein-related filtration

PES is recommended for the following applications:

- General HPLC or UHPLC sample prep
- LC/MS sample prep
- Biological samples
- Tissue culture samples
- Drug filtration

A group of representative proteins were used for protein binding evaluation during filtration, from small to large size, from hydrophobic to hydrophilic properties.

Myoglobin was selected for further investigation at concentrations of 0.1 - 1.0 mg/mL.

Agilent PES filters provide higher and more consistent filtration recoveries for all of proteins evaluated, including dimers and monomers, than competitors' PES and PVDF filters.

Agilent PES membrane filters are the best choice for protein/peptide related sample filtration, consistently providing the lowest protein binding during filtration.

Agilent PES filters provide higher recovery for protein filtration than competitors' PES and PVDF filters

Protoin (tested at 0.5 mg/ml.)			Recovery (%)	
Frotein (testeu at 0.5 mg/mL)		Agilent PES (0.2 µm)	P-PES (0.2 μm)	M-PES (0.2 μm)

In a different experiment, Agilent PES filters provide higher and more consistent filtration recoveries for sticky protein myoglobin over the low to high concentrations, as compared to competitors' PES filters.

Myoglobin conc.	Agilent PES		M-	PES	P-PES		
	D (Rec%)	M (Rec%)	D (Rec%)	M (Rec%)	D (Rec%)	M (Rec%)	

Go with the flow with Agilent PES membranes

Agilent PES filter membranes are a better option than PVDF membranes for most LC analyses. Agilent PES has similar compatibility as PVDF for common LC solvents and is superior in terms of protein binding and cleanliness. Learn more about Agilent's clean syringe filters at www.agilent/com/chem/filtration

Filtration recovery comparison for Agilent PES filter with other PVDF filters for different proteins at 0.5 mg/mL

Filtration recovery comparison for Agilent PES filter with other PVDF filters for myoglobin over different levels

Competitors' PES membranes

Agilent Captiva Econofilters

High-quality Econofilters are shipped in large packs and are ideal for busy labs that need fast, efficient filtration at a reasonable price.

Econofilters, 1000/pk

Description	Diameter (mm)	Pore Size (µm)	Housing	Part No.
	25			
	25			
	13	0.2	Polypropylene	5190-5273
	13	0.45	Polypropylene	5190-5274
	25	0.2	Polypropylene	5190-5275
	25	0.45	Polypropylene	5190-5276
	13	0.2	Polypropylene	5190-5281
	13	0.2	Polypropylene	5190-5282
	25	0.2	Polypropylene	5190-5283
	25	0.45	Polypropylene	5190-5284

- Ideal for busy, high-volume labs
- Choose from a variety of membrane types and pore sizes
- Money-saving 1,000 packs

Agilent Captiva Econofilter Specifications

Membrane	Diameter	Pore Size	Filtration Area (cm²)	Bubble Point (bar)	Flow Rate (mL/min@.07 bar)	Burst Pressure (bar)

Step by step instructions

Follow these steps to realize the full benefits of filtration

Before filling with sample, draw approximately 1 mL of air into the syringe. This will minimize fluid retention.

Draw your sample into the syringe, then draw in about 1 mL of air. Invert the syringe and wipe residue off tip.

Connect the syringe to the syringe filter using a luer connection. Twist gently to ensure a secure seal.

residual sample. This will maximize sample recovery.

Warning: Use caution with syringes smaller than 10 mL. They can easily generate enough pressure to burst the syringe filter. Agilent syringe filters are for laboratory use only. Pre-wetting the filter, while not necessary, can be performed as an extra step.

Agilent Captiva Syringe Filter Selection Guide

			Sample Co	ompositio	on		
STEP	Aqueo All aqueous tissue culture/ protein applications/ large molecules	ous solutions sma ap gen	all molecules oplications/ eral aqueous			•	0
	PES Polyethersulfone pH Range 3-12						
	CA Cellulose Acetate pH Range 4-8	RC Rege pH Rang					
		- NY Nylo - pH Rang	n 8 3 4 4				
				PTFE Poly pH Range	tetrafluorethyl 1-14	ene	
			Sample	Volume			
2 STEP	0.1	-1 mL		4	15 mL	*	10-150 mL
		What	is the Particle S	ize of You	ur LC Colu	mn?	
S S	Columns packed <		icles				
	Turne of Eiltration		Applic	ations	Pasamman		ornetivos
					Necomment	ieu All	ernauves

Premium Syringe Filter Chemical Compatibility

Legend					
Compatible ••					
Limited compatibility •	-				
Not compatible –	-				
Not analyzed N/A					
Filter					
Housing					
Acetonitrile					
Benzene					
Benzyl alcohol					
n-Butyl acetate					
n-Butanol					
Carbon tetrachloride					
Chloroform					
Cyclohexane					
Diethylacetamide					
Diethyl ether					
Dimethyl formamide					
Dimethylsulfoxide					
Dioxane					
Ethanol, 98%					
Ethyl acetate					
Ethylene glycol					
Formamide					
Gasoline					
Glycerin					
n-Heptane					
n-Hexane					
Isopropanol					
lsopropyl acetate					
Methanol, 30%					
Methanol, 98%					
Methyl acetate					
Methylene chloride					

*CA and GF membranes in MBS housing for 28 mm size

Contact time:24 hours at 20 °C

Chemical compatibilities can be influenced by various factors. Therefore, we recommend that you confirm compatibiliti with the liquid you want to filter by performing a trial filtration run before you start your actual filtration

(Continued)

Premium Syringe Filter Chemical Compatibility Continued

Compatible	••					
Limited compatibility	•					
Not compatible	_					
Not analyzed	N/A					
Filter						
Housing						
Methyl ethyl ketone						
Methyl isobutyl ketone						
Monochlorobenzene						
Pyridine						
Tetrahydrofuran						
Toluene						
Trichloroethane						
Acetic acid, 25%						
Acetic acid, 80%						
Hydrochloric acid, 20%						
Hydrofluoric acid, 25%						
Nitric acid, 25%						
Phosphoric acid, 1%						
Sulfuric acid, 25%						
Ammonium hydroxide, 25%						
Formalin, 30%						
Hydrogen peroxide, 30%						
рН 1-14						
рН 1-13						
рН 3-14						
рН 3-12						

*CA and GF membranes in MBS housing for 28 mm size

Contact time:24 hours at 20 °C

Chemical compatibilities can be influenced by various factors. Therefore, we recommend that you confirm compatibility with the liquid you want to filter by performing a trial filtration run before you start your actual filtration.

Econofilters Chemical

Chemical Compatibility	Nylon membrane	Polyvinylidene Difluoride membrane	Polytetrafluorethylene membrane	Polyethersulfone membrane	Polypropylene membrane	Regenerated Cellulose membrane
Filter	Nylon	PVDF	PTFE	PES	PP	RC
Acetic Glacial	LC	R	R	NR	R	R
Acetone	R	LC	R	NR	R	R
Ammonium Hydroxide, 1N	R	LC	R	R	R	
Amyl Acetate	LC	LC	R		R	R
Amyl Alcohol	R	R	R	R	R	R
Aniline	LC	R	R	NR	LC	R
Benzene	LC	LC	R	LC	NR	R
Benzyl Alcohol, 100%	R	R	R	R	R	R
Butanone	LC	LC	R		R	R
Dichlorodifluoromethane, TF	R	R	R	R	LC	R
Dioxane	R	LC	R		R	LC
Ethyl Acetate	LC	R	R	LC	LC	R
Ethylene Dichloride	LR	LR	R	NR	LR	
Formaldehyde Solution, 30%	R	R	R	R	R	LC

Recommended use	R
Not recommended use	NR
Limited Compatibility	LC
No instructions	
*This guide is only for reference.	

(Continued)

21

Econofilters Chemical Compatibility Continued

Filter	Nylon	PVDF	PTFE	PES	PP	RC
Gasoline	LC	LC	LC	R	LC	R
Glycerol	R	R	R	LC	R	R
Hydrochloric Concentrated	NR	R	NR	R	R	R
Hydrochloric, 25%	LC	R	R	R	R	R
Isopropanol	R	R	R	R	R	R
Isopropyl Ether		R	R		R	
Kerosene		R	R	R	R	
Methanol, 98%	LC	R	R	R	R	R
Methyl Acetate	LC	LC	R	NR	R	R
Methylene Chloride	NR	LC	R	NR	LC	R
Nitric, 25%	NR	LC	R		R	R
Nitric, Concentrated	NR	LC	R		R	NR
Phenol Aqueous, 10%	NR	LC	R	NR	R	R
Phosphoric, 25%	NR	R	R		R	R
Potassium hydroxide 3N	R	LC	R	R	R	
Propylene Glycol	R	R	R	LR	R	R
Pyridine	LC	LC	NR	NR	LC	R
Sodium Hydroxide, 3N	R	LC	R	R	R	
Sodium Hydroxide, 6N	R	NR	R	R	R	
Sulfuric, Concentrated	NR	LC	R	NR	R	LC
Tetrahydrofuran, THF	R	LC	R	NR	LC	LC
Toluene	NR	LC	R	NR	NR	R
Trichloroethylene	LC	NR	R	LC	LC	R
Water	R	R	R	R	R	R

Recommended use	R
Not recommended use	NR
Limited Compatibility	LC
No instructions	
*This guide is only for reference.	

Simplify your workflow with Captiva Filtration Family of Products

Maximize the benefits of Captiva with these additional products

Agilent Bond Elut SPE, Bond Elut QuEChERS and Captiva Filtration Sample Prep family of products offer the widest range of solutions for every level of sample cleanliness to help you increase throughput and increase the quality of your data.

Learn more at www.agilent.com/chem/sampleprep

The Agilent LC Columns Family

Choice, control and assured excellent results

Agilent designs and manufactures columns to suit most techniques for small molecule, biomolecule and synthetic polymer analysis, allowing you to scale methods from conventional 5 µm... to "Fast LC" sub-2 µm... to prep. You have access to Agilent's extensive applications library for faster method development — plus worldwide technical support, speedy problem resolution, our global infrastructure, and delivery network. Agilent's meticulous production oversight ensures column consistency and performance. With more than 40 years of experience in producing polymers and silica chemistries, our team is committed to continuously developing new column advances that make you most productive.

Learn more at www.agilent.com/chem/lccolumns

Ensuring peak performance and productivity

Vials, caps and other small LC system components can contribute to big problems such as injector damage, ghost peaks and analyte degradation. Agilent parts and supplies are engineered and tested to deliver the same reliability and reproducibility you expect from Agilent instruments and columns. Agilent CrossLab products help you streamline your lab procurement with a full line of supplies and parts for non-Agilent instruments. You can count on Agilent parts and supplies to help you keep your system operating at peak performance with the highest possible uptime.

The 1200 infinity series arms you with the tools for high performance fast LC

Everyone's looking for increased throughput these days. The Agilent 1200 Infinity Series LC Systems give you UHPLC performance at every price range, whether you need a "workhorse" LC system for routine analysis or a sophisticated, high resolution LC/MS system.

The 1200 Infinity Series arms you with the tools for high performance Fast LC. Here, we'll provide some additional tips about how to get the most from your Fast LC instruments and columns.

Learn more at www.agilent.com/chem/InfinityLC

AGILENT CHEMISTRIES:

KEEPING YOU IN COMMAND OF YOUR ANALYSIS

Confidence comes from having the right tools and a partner you can count on. To give you the best choices for every analysis, Agilent offers the widest range of advanced sample preparation products, GC columns, and LC columns.

Agilent's meticulous production oversight ensures column and sample prep consistency and performance. With more than 40 years of experience producing polymers and silica chemistries, our team is committed to continuously developing new advances to make you more productive.

For more information

Learn more: www.agilent.com/chem/filtration

Buy online: www.agilent.com/chem/store

U.S. and Canada **1-800-227-9770**

Europe Info_agilent@agilent.com

Asia Pacific Inquiry_Isca@agilent.com

Scan with your mobile phone to view Agilent's broad portfolio of Sample Prep Products.

This information is subject to change without notice.

© Agilent Technologies, Inc. 2013 Printed in USA January 17, 2013 5991-1230EN

Our Syringe Filter Online Selection Guide makes it fast and easy to choose the best syringe filter for your application. Try it now at: www.agilent.com/chem/SelectFilters

Agilent Technologies